|
| 1 | +/* Copyright (c) 2018 Gregor Richards */ |
| 2 | +/* |
| 3 | + Redistribution and use in source and binary forms, with or without |
| 4 | + modification, are permitted provided that the following conditions |
| 5 | + are met: |
| 6 | +
|
| 7 | + - Redistributions of source code must retain the above copyright |
| 8 | + notice, this list of conditions and the following disclaimer. |
| 9 | +
|
| 10 | + - Redistributions in binary form must reproduce the above copyright |
| 11 | + notice, this list of conditions and the following disclaimer in the |
| 12 | + documentation and/or other materials provided with the distribution. |
| 13 | +
|
| 14 | + THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
| 15 | + ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
| 16 | + LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
| 17 | + A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE FOUNDATION OR |
| 18 | + CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, |
| 19 | + EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, |
| 20 | + PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR |
| 21 | + PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF |
| 22 | + LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING |
| 23 | + NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS |
| 24 | + SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
| 25 | +*/ |
| 26 | + |
| 27 | +#ifdef HAVE_CONFIG_H |
| 28 | +#include "config.h" |
| 29 | +#endif |
| 30 | + |
| 31 | +#include <stdio.h> |
| 32 | +#include <stdlib.h> |
| 33 | +#include <sys/types.h> |
| 34 | + |
| 35 | +#include "rnn.h" |
| 36 | +#include "rnn_data.h" |
| 37 | +#include "rnnoise.h" |
| 38 | + |
| 39 | +RNNModel *rnnoise_model_from_file(FILE *f) |
| 40 | +{ |
| 41 | + int i, in; |
| 42 | + |
| 43 | + if (fscanf(f, "rnnoise-nu model file version %d\n", &in) != 1 || in != 1) |
| 44 | + return NULL; |
| 45 | + |
| 46 | + RNNModel *ret = calloc(1, sizeof(RNNModel)); |
| 47 | + if (!ret) |
| 48 | + return NULL; |
| 49 | + |
| 50 | +#define ALLOC_LAYER(type, name) \ |
| 51 | + type *name; \ |
| 52 | + name = calloc(1, sizeof(type)); \ |
| 53 | + if (!name) { \ |
| 54 | + rnnoise_model_free(ret); \ |
| 55 | + return NULL; \ |
| 56 | + } \ |
| 57 | + ret->name = name |
| 58 | + |
| 59 | + ALLOC_LAYER(DenseLayer, input_dense); |
| 60 | + ALLOC_LAYER(GRULayer, vad_gru); |
| 61 | + ALLOC_LAYER(GRULayer, noise_gru); |
| 62 | + ALLOC_LAYER(GRULayer, denoise_gru); |
| 63 | + ALLOC_LAYER(DenseLayer, denoise_output); |
| 64 | + ALLOC_LAYER(DenseLayer, vad_output); |
| 65 | + |
| 66 | +#define INPUT_VAL(name) do { \ |
| 67 | + if (fscanf(f, "%d", &in) != 1 || in < 0 || in > 128) { \ |
| 68 | + rnnoise_model_free(ret); \ |
| 69 | + return NULL; \ |
| 70 | + } \ |
| 71 | + name = in; \ |
| 72 | + } while (0) |
| 73 | + |
| 74 | +#define INPUT_ARRAY(name, len) do { \ |
| 75 | + rnn_weight *values = malloc((len) * sizeof(rnn_weight)); \ |
| 76 | + if (!values) { \ |
| 77 | + rnnoise_model_free(ret); \ |
| 78 | + return NULL; \ |
| 79 | + } \ |
| 80 | + name = values; \ |
| 81 | + for (i = 0; i < (len); i++) { \ |
| 82 | + if (fscanf(f, "%d", &in) != 1) { \ |
| 83 | + rnnoise_model_free(ret); \ |
| 84 | + return NULL; \ |
| 85 | + } \ |
| 86 | + values[i] = in; \ |
| 87 | + } \ |
| 88 | + } while (0) |
| 89 | + |
| 90 | +#define INPUT_DENSE(name) do { \ |
| 91 | + INPUT_VAL(name->nb_inputs); \ |
| 92 | + INPUT_VAL(name->nb_neurons); \ |
| 93 | + INPUT_ARRAY(name->input_weights, name->nb_inputs * name->nb_neurons); \ |
| 94 | + INPUT_ARRAY(name->bias, name->nb_neurons); \ |
| 95 | + } while (0) |
| 96 | + |
| 97 | +#define INPUT_GRU(name) do { \ |
| 98 | + INPUT_VAL(name->nb_inputs); \ |
| 99 | + INPUT_VAL(name->nb_neurons); \ |
| 100 | + INPUT_ARRAY(name->input_weights, name->nb_inputs * name->nb_neurons * 3); \ |
| 101 | + INPUT_ARRAY(name->recurrent_weights, name->nb_neurons * name->nb_neurons * 3); \ |
| 102 | + INPUT_ARRAY(name->bias, name->nb_neurons * 3); \ |
| 103 | + } while (0) |
| 104 | + |
| 105 | + INPUT_DENSE(input_dense); |
| 106 | + INPUT_GRU(vad_gru); |
| 107 | + INPUT_GRU(noise_gru); |
| 108 | + INPUT_GRU(denoise_gru); |
| 109 | + INPUT_DENSE(denoise_output); |
| 110 | + INPUT_DENSE(vad_output); |
| 111 | + |
| 112 | + return ret; |
| 113 | +} |
| 114 | + |
| 115 | +void rnnoise_model_free(RNNModel *model) |
| 116 | +{ |
| 117 | +#define FREE_MAYBE(ptr) do { if (ptr) free(ptr); } while (0) |
| 118 | +#define FREE_DENSE(name) do { \ |
| 119 | + if (model->name) { \ |
| 120 | + free((void *) model->name->input_weights); \ |
| 121 | + free((void *) model->name->bias); \ |
| 122 | + free((void *) model->name); \ |
| 123 | + } \ |
| 124 | + } while (0) |
| 125 | +#define FREE_GRU(name) do { \ |
| 126 | + if (model->name) { \ |
| 127 | + free((void *) model->name->input_weights); \ |
| 128 | + free((void *) model->name->recurrent_weights); \ |
| 129 | + free((void *) model->name->bias); \ |
| 130 | + free((void *) model->name); \ |
| 131 | + } \ |
| 132 | + } while (0) |
| 133 | + |
| 134 | + if (!model) |
| 135 | + return; |
| 136 | + FREE_DENSE(input_dense); |
| 137 | + FREE_GRU(vad_gru); |
| 138 | + FREE_GRU(noise_gru); |
| 139 | + FREE_GRU(denoise_gru); |
| 140 | + FREE_DENSE(denoise_output); |
| 141 | + FREE_DENSE(vad_output); |
| 142 | + free(model); |
| 143 | +} |
0 commit comments