- This toolbox offers a Sine Cosine Algorithm ( SCA ) method
- The
Mainfile illustrates the example of how SCA can solve the feature selection problem using benchmark data-set.
feat: feature vector ( Instances x Features )label: label vector ( Instances x 1 )N: number of solutionsmax_Iter: maximum number of iterationsalpha: constant
sFeat: selected featuresSf: selected feature indexNf: number of selected featurescurve: convergence curve
% Benchmark data set
load ionosphere.mat;
% Set 20% data as validation set
ho = 0.2;
% Hold-out method
HO = cvpartition(label,'HoldOut',ho);
% Parameter setting
N = 10;
max_Iter = 100;
alpha = 2;
% Sine Cosine Algorithm
[sFeat,Sf,Nf,curve] = jSCA(feat,label,N,max_Iter,alpha,HO);
% Plot convergence curve
plot(1:max_Iter,curve);
xlabel('Number of iterations');
ylabel('Fitness Value');
title('SCA'); grid on;
- MATLAB 2014 or above
- Statistics and Machine Learning Toolbox