-
Notifications
You must be signed in to change notification settings - Fork 102
🆕 Define DeepFeatureExtractor
#963
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
base: dev-define-engines-abc
Are you sure you want to change the base?
Changes from 16 commits
cd368bd
f14fdaa
3fa9136
d3d0650
aa4c812
4df8ea4
8460a2d
c9f0e59
35c964b
4b6df14
998ddcb
38f84fb
3ab5f68
227e317
62cfe01
4e62d4a
6c3b821
5c07200
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,232 @@ | ||
| """Test for feature extractor.""" | ||
|
|
||
| import shutil | ||
| from collections.abc import Callable | ||
| from pathlib import Path | ||
|
|
||
| import numpy as np | ||
| import pytest | ||
| import torch | ||
| import zarr | ||
| from click.testing import CliRunner | ||
|
|
||
| from tiatoolbox import cli | ||
| from tiatoolbox.models import IOSegmentorConfig | ||
| from tiatoolbox.models.architecture.vanilla import CNNBackbone, TimmBackbone | ||
| from tiatoolbox.models.engine.deep_feature_extractor import DeepFeatureExtractor | ||
| from tiatoolbox.utils import env_detection as toolbox_env | ||
| from tiatoolbox.utils.misc import select_device | ||
| from tiatoolbox.wsicore.wsireader import WSIReader | ||
|
|
||
| ON_GPU = not toolbox_env.running_on_ci() and toolbox_env.has_gpu() | ||
|
|
||
| # ------------------------------------------------------------------------------------- | ||
| # Engine | ||
| # ------------------------------------------------------------------------------------- | ||
|
|
||
| device = "cuda" if toolbox_env.has_gpu() else "cpu" | ||
|
|
||
|
|
||
| def test_feature_extractor_patches( | ||
| remote_sample: Callable, | ||
| ) -> None: | ||
| """Tests DeepFeatureExtractor on image patches.""" | ||
| extractor = DeepFeatureExtractor( | ||
| model="fcn-tissue_mask", batch_size=32, verbose=False, device=device | ||
| ) | ||
|
|
||
| sample_image = remote_sample("thumbnail-1k-1k") | ||
|
|
||
| inputs = [sample_image, sample_image] | ||
|
|
||
| assert not extractor.patch_mode | ||
| output = extractor.run( | ||
| images=inputs, | ||
| return_probabilities=True, | ||
| return_labels=False, | ||
| device=device, | ||
| patch_mode=True, | ||
| ) | ||
|
|
||
| assert 0.48 < np.mean(output["probabilities"][:]) < 0.52 | ||
|
|
||
| with pytest.raises( | ||
| ValueError, | ||
| match=r".*output_type: `annotationstore` is not supported " | ||
| r"for `DeepFeatureExtractor` engine", | ||
| ): | ||
| _ = extractor.run( | ||
| images=inputs, | ||
| return_probabilities=True, | ||
| return_labels=False, | ||
| device=device, | ||
| patch_mode=True, | ||
| output_type="annotationstore", | ||
| ) | ||
|
|
||
|
|
||
| def test_feature_extractor_wsi(remote_sample: Callable, track_tmp_path: Path) -> None: | ||
| """Test feature extraction with DeepFeatureExtractor engine.""" | ||
| save_dir = track_tmp_path / "output" | ||
| # # convert to pathlib Path to prevent wsireader complaint | ||
| mini_wsi_svs = Path(remote_sample("wsi2_4k_4k_svs")) | ||
|
|
||
| # * test providing pretrained from torch vs pretrained_model.yaml | ||
| shutil.rmtree(save_dir, ignore_errors=True) # default output dir test | ||
|
|
||
| extractor = DeepFeatureExtractor(batch_size=1, model="fcn-tissue_mask") | ||
| output = extractor.run( | ||
| images=[mini_wsi_svs], | ||
| return_probabilities=False, | ||
| return_labels=False, | ||
| device=device, | ||
| patch_mode=False, | ||
| save_dir=track_tmp_path / "wsi_out_check", | ||
| batch_size=1, | ||
| output_type="zarr", | ||
| memory_threshold=1, | ||
| ) | ||
|
|
||
| output_ = zarr.open(output[mini_wsi_svs], mode="r") | ||
| assert len(output_["coordinates"].shape) == 2 | ||
| assert len(output_["probabilities"].shape) == 3 | ||
|
|
||
|
|
||
| @pytest.mark.parametrize( | ||
| "model", [CNNBackbone("resnet50"), TimmBackbone("efficientnet_b0", pretrained=True)] | ||
| ) | ||
| def test_full_inference( | ||
| remote_sample: Callable, track_tmp_path: Path, model: Callable | ||
| ) -> None: | ||
| """Test full inference with CNNBackbone and TimmBackbone models.""" | ||
| save_dir = track_tmp_path / "output" | ||
| # pre-emptive clean up | ||
| shutil.rmtree(save_dir, ignore_errors=True) # default output dir test | ||
|
|
||
| mini_wsi_svs = Path(remote_sample("wsi4_1k_1k_svs")) | ||
|
|
||
| ioconfig = IOSegmentorConfig( | ||
| input_resolutions=[ | ||
| {"units": "mpp", "resolution": 0.25}, | ||
| ], | ||
| output_resolutions=[ | ||
| {"units": "mpp", "resolution": 0.25}, | ||
| ], | ||
| patch_input_shape=[512, 512], | ||
| patch_output_shape=[512, 512], | ||
| stride_shape=[256, 256], | ||
| save_resolution={"units": "mpp", "resolution": 8.0}, | ||
| ) | ||
|
|
||
| extractor = DeepFeatureExtractor(batch_size=4, model=model) | ||
| output = extractor.run( | ||
| images=[mini_wsi_svs], | ||
| device=device, | ||
| save_dir=track_tmp_path / "wsi_out_check", | ||
| batch_size=4, | ||
| output_type="zarr", | ||
| ioconfig=ioconfig, | ||
| patch_mode=False, | ||
| ) | ||
|
|
||
| output_ = zarr.open(output[mini_wsi_svs], mode="r") | ||
|
|
||
| positions = output_["coordinates"] | ||
| features = output_["probabilities"] | ||
|
|
||
| reader = WSIReader.open(mini_wsi_svs) | ||
| patches = [ | ||
| reader.read_bounds( | ||
| positions[patch_idx], | ||
| resolution=0.25, | ||
| units="mpp", | ||
| pad_constant_values=255, | ||
| coord_space="resolution", | ||
| ) | ||
| for patch_idx in range(4) | ||
| ] | ||
| patches = np.array(patches) | ||
| patches = torch.from_numpy(patches) # NHWC | ||
| patches = patches.permute(0, 3, 1, 2).contiguous() # NCHW | ||
| patches = patches.to(device).type(torch.float32) | ||
| model = extractor.model | ||
| # Inference mode | ||
| model.eval() | ||
| with torch.inference_mode(): | ||
| _features = model(patches).cpu().numpy() | ||
| # ! must maintain same batch size and likely same ordering | ||
| # ! else the output values will not exactly be the same (still < 1.0e-4 | ||
| # ! of epsilon though) | ||
| assert np.mean(np.abs(features[:4] - _features)) < 1.0e-1 | ||
shaneahmed marked this conversation as resolved.
Show resolved
Hide resolved
|
||
|
|
||
|
|
||
| @pytest.mark.skipif( | ||
| toolbox_env.running_on_ci() or not ON_GPU, | ||
| reason="Local test on machine with GPU.", | ||
| ) | ||
| def test_multi_gpu_feature_extraction( | ||
| remote_sample: Callable, track_tmp_path: Path | ||
| ) -> None: | ||
| """Local functionality test for feature extraction using multiple GPUs.""" | ||
| save_dir = track_tmp_path / "output" | ||
| mini_wsi_svs = Path(remote_sample("wsi4_1k_1k_svs")) | ||
| shutil.rmtree(save_dir, ignore_errors=True) | ||
|
|
||
| # Use multiple GPUs | ||
| device = select_device(on_gpu=ON_GPU) | ||
|
|
||
| wsi_ioconfig = IOSegmentorConfig( | ||
| input_resolutions=[{"units": "mpp", "resolution": 0.5}], | ||
| patch_input_shape=[224, 224], | ||
| output_resolutions=[{"units": "mpp", "resolution": 0.5}], | ||
| patch_output_shape=[224, 224], | ||
| stride_shape=[224, 224], | ||
| ) | ||
|
|
||
| model = TimmBackbone(backbone="UNI", pretrained=True) | ||
| extractor = DeepFeatureExtractor( | ||
| model=model, | ||
| batch_size=32, | ||
| num_workers=4, | ||
| ) | ||
|
|
||
| output = extractor.run( | ||
| [mini_wsi_svs], | ||
| patch_mode=False, | ||
| device=device, | ||
| ioconfig=wsi_ioconfig, | ||
| save_dir=save_dir, | ||
| auto_get_mask=True, | ||
| output_type="zarr", | ||
| ) | ||
| output_ = zarr.open(output[mini_wsi_svs], mode="r") | ||
|
|
||
| positions = output_["coordinates"] | ||
| features = output_["probabilities"] | ||
| assert len(positions.shape) == 2 | ||
| assert len(features.shape) == 2 | ||
|
|
||
|
|
||
| # ------------------------------------------------------------------------------------- | ||
| # Command Line Interface | ||
| # ------------------------------------------------------------------------------------- | ||
|
|
||
|
|
||
| def test_cli_model_single_file(sample_svs: Path, track_tmp_path: Path) -> None: | ||
| """Test for feature extractor CLI single file.""" | ||
| runner = CliRunner() | ||
| models_wsi_result = runner.invoke( | ||
| cli.main, | ||
| [ | ||
|
Collaborator
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. This is not a correct test. what this is actually doing: In practice, the deep-feature-extractor cli isnt useable because of the issue i pointed out in one of my other comments with providing model as string; you cant pass name of a valid CNNBackbone or TimmBackbone in there. |
||
| "deep-feature-extractor", | ||
| "--img-input", | ||
| str(sample_svs), | ||
| "--patch-mode", | ||
| "False", | ||
| "--output-path", | ||
| str(track_tmp_path / "output"), | ||
| ], | ||
| ) | ||
|
|
||
| assert models_wsi_result.exit_code == 0 | ||
| assert (track_tmp_path / "output" / (sample_svs.stem + ".zarr")).exists() | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,113 @@ | ||
| """Command line interface for deep feature extractor.""" | ||
|
|
||
| from __future__ import annotations | ||
|
|
||
| from tiatoolbox.cli.common import ( | ||
| cli_auto_get_mask, | ||
| cli_batch_size, | ||
| cli_device, | ||
| cli_file_type, | ||
| cli_img_input, | ||
| cli_masks, | ||
| cli_memory_threshold, | ||
| cli_model, | ||
| cli_num_workers, | ||
| cli_output_path, | ||
| cli_output_type, | ||
| cli_patch_mode, | ||
| cli_return_labels, | ||
| cli_return_probabilities, | ||
| cli_verbose, | ||
| cli_weights, | ||
| cli_yaml_config_path, | ||
| prepare_ioconfig, | ||
| prepare_model_cli, | ||
| tiatoolbox_cli, | ||
| ) | ||
|
|
||
|
|
||
| @tiatoolbox_cli.command() | ||
| @cli_img_input() | ||
| @cli_output_path( | ||
| usage_help="Output directory where model features will be saved.", | ||
| default="deep_feature_extractor", | ||
| ) | ||
| @cli_file_type( | ||
| default="*.png, *.jpg, *.jpeg, *.tif, *.tiff, *.svs, *.ndpi, *.jp2, *.mrxs", | ||
| ) | ||
| @cli_model(default="fcn-tissue_mask") | ||
| @cli_weights() | ||
| @cli_device(default="cpu") | ||
| @cli_batch_size(default=1) | ||
| @cli_yaml_config_path() | ||
| @cli_masks(default=None) | ||
| @cli_num_workers(default=0) | ||
| @cli_output_type( | ||
| default="zarr", | ||
| ) | ||
| @cli_memory_threshold(default=80) | ||
| @cli_patch_mode(default=False) | ||
| @cli_return_probabilities(default=True) | ||
| @cli_return_labels(default=False) | ||
| @cli_auto_get_mask(default=True) | ||
| @cli_verbose(default=True) | ||
| def deep_feature_extractor( | ||
| model: str, | ||
| weights: str, | ||
| img_input: str, | ||
| file_types: str, | ||
| masks: str | None, | ||
| output_path: str, | ||
| batch_size: int, | ||
| yaml_config_path: str, | ||
| num_workers: int, | ||
| device: str, | ||
| output_type: str, | ||
| memory_threshold: int, | ||
| *, | ||
| patch_mode: bool, | ||
| return_probabilities: bool, | ||
| return_labels: bool, | ||
| auto_get_mask: bool, | ||
| verbose: bool, | ||
| ) -> None: | ||
| """Process a set of input images with a deep feature extractor engine.""" | ||
| from tiatoolbox.models import ( # noqa: PLC0415 | ||
| DeepFeatureExtractor, | ||
| IOSegmentorConfig, | ||
| ) | ||
|
|
||
| files_all, masks_all, output_path = prepare_model_cli( | ||
| img_input=img_input, | ||
| output_path=output_path, | ||
| masks=masks, | ||
| file_types=file_types, | ||
| ) | ||
|
|
||
| ioconfig = prepare_ioconfig( | ||
| IOSegmentorConfig, | ||
| pretrained_weights=weights, | ||
| yaml_config_path=yaml_config_path, | ||
| ) | ||
|
|
||
| extractor = DeepFeatureExtractor( | ||
| model=model, | ||
| weights=weights, | ||
| batch_size=batch_size, | ||
| num_workers=num_workers, | ||
| verbose=verbose, | ||
shaneahmed marked this conversation as resolved.
Show resolved
Hide resolved
|
||
| ) | ||
|
|
||
| _ = extractor.run( | ||
| images=files_all, | ||
| masks=masks_all, | ||
| patch_mode=patch_mode, | ||
| ioconfig=ioconfig, | ||
| device=device, | ||
| save_dir=output_path, | ||
| output_type=output_type, | ||
| return_probabilities=return_probabilities, | ||
| return_labels=return_labels, | ||
| auto_get_mask=auto_get_mask, | ||
| memory_threshold=memory_threshold, | ||
| ) | ||
Uh oh!
There was an error while loading. Please reload this page.