Skip to content
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
48 changes: 48 additions & 0 deletions pandas-stubs/core/series.pyi
Original file line number Diff line number Diff line change
Expand Up @@ -4494,6 +4494,54 @@ class Series(IndexOpsMixin[S1], ElementOpsMixin[S1], NDFrame):
**kwargs: Any,
) -> np_1darray[_T_INTERVAL_NP]: ...
@overload
def to_numpy(
self: Series[int],
dtype: DTypeLike | None = None,
copy: bool = False,
na_value: Scalar = ...,
**kwargs: Any,
) -> np_1darray[np.integer]: ...
@overload
def to_numpy(
self: Series[float],
dtype: DTypeLike | None = None,
copy: bool = False,
na_value: Scalar = ...,
**kwargs: Any,
) -> np_1darray[np.floating]: ...
@overload
def to_numpy(
self: Series[complex],
dtype: DTypeLike | None = None,
copy: bool = False,
na_value: Scalar = ...,
**kwargs: Any,
) -> np_1darray[np.complexfloating]: ...
@overload
def to_numpy(
self: Series[bool],
dtype: DTypeLike | None = None,
copy: bool = False,
na_value: Scalar = ...,
**kwargs: Any,
) -> np_1darray[np.bool_]: ...
@overload
def to_numpy(
self: Series[_str],
dtype: DTypeLike | None = None,
copy: bool = False,
na_value: Scalar = ...,
**kwargs: Any,
) -> np_1darray[np.str_]: ...
@overload
def to_numpy(
self: Series[bytes],
dtype: DTypeLike | None = None,
copy: bool = False,
na_value: Scalar = ...,
**kwargs: Any,
) -> np_1darray[np.bytes_]: ...
@overload
def to_numpy( # pyright: ignore[reportIncompatibleMethodOverride]
self,
dtype: DTypeLike | None = None,
Expand Down
89 changes: 83 additions & 6 deletions tests/series/test_series.py
Original file line number Diff line number Diff line change
Expand Up @@ -45,6 +45,7 @@
)
import xarray as xr

from pandas._libs.tslibs.offsets import Day
from pandas._typing import (
DtypeObj,
Scalar,
Expand Down Expand Up @@ -1980,16 +1981,92 @@ def test_dtype_type() -> None:

def test_types_to_numpy() -> None:
s = pd.Series(["a", "b", "c"], dtype=str)
check(assert_type(s.to_numpy(), np_1darray), np_1darray)
check(assert_type(s.to_numpy(dtype="str", copy=True), np_1darray), np_1darray)
check(assert_type(s.to_numpy(na_value=0), np_1darray), np_1darray)
check(assert_type(s.to_numpy(na_value=np.int32(4)), np_1darray), np_1darray)
check(assert_type(s.to_numpy(na_value=np.float16(4)), np_1darray), np_1darray)
check(assert_type(s.to_numpy(na_value=np.complex128(4, 7)), np_1darray), np_1darray)
check(assert_type(s.to_numpy(), np_1darray[np.str_]), np_1darray)
check(
assert_type(s.to_numpy(dtype="str", copy=True), np_1darray[np.str_]), np_1darray
)
check(assert_type(s.to_numpy(na_value=0), np_1darray[np.str_]), np_1darray)
check(
assert_type(s.to_numpy(na_value=np.int32(4)), np_1darray[np.str_]), np_1darray
)
check(
assert_type(s.to_numpy(na_value=np.float16(4)), np_1darray[np.str_]), np_1darray
)
check(
assert_type(s.to_numpy(na_value=np.complex128(4, 7)), np_1darray[np.str_]),
np_1darray,
)

check(assert_type(pd.Series().to_numpy(), np_1darray), np_1darray)


def test_to_numpy() -> None:
"""Test Series.to_numpy for different types."""
s1 = pd.Series(["a", "b", "c"], dtype=str)
check(assert_type(s1.to_numpy(), np_1darray[np.str_]), np_1darray, str)

s2 = pd.Series(["a", "b", "c"]).astype(bytes)
check(assert_type(s2.to_numpy(), np_1darray[np.bytes_]), np_1darray, np.bytes_)

s3 = pd.Series([True, False])
check(assert_type(s3.to_numpy(), np_1darray[np.bool_]), np_1darray, np.bool_)

s4 = pd.Series([2, 3, 4])
check(assert_type(s4.to_numpy(), np_1darray[np.integer]), np_1darray, np.integer)

s5 = pd.Series([2.0, 3.54, 4.84])
check(assert_type(s5.to_numpy(), np_1darray[np.floating]), np_1darray, np.floating)

s6 = pd.Series([2.0 + 2j, 3.54 + 4j, 4.84])
check(
assert_type(s6.to_numpy(), np_1darray[np.complexfloating]),
np_1darray,
np.complexfloating,
)

dates = pd.Series(
[
pd.Timestamp("2020-01-01"),
pd.Timestamp("2020-01-15"),
pd.Timestamp("2020-02-01"),
],
dtype="datetime64[ns]",
)
s7 = pd.Series(pd.PeriodIndex(dates, freq="M"))
check(assert_type(s7.to_numpy(), np_1darray[np.object_]), np_1darray, pd.Period)

s8 = pd.Series(
[
pd.Interval(date, date + pd.DateOffset(days=1), closed="left")
for date in dates
]
)
check(assert_type(s8.to_numpy(), np_1darray[np.object_]), np_1darray, pd.Interval)

s9 = (
pd.Series(pd.period_range(start="2017-01-01", end="2017-02-01", freq="1D"))
.diff()
.iloc[1:]
)
check(assert_type(s9.to_numpy(), np_1darray[np.object_]), np_1darray, Day)

s10 = pd.Series(pd.date_range(start="2017-01-01", end="2017-02-01"))
check(
assert_type(s10.to_numpy(), np_1darray[np.datetime64]),
np_1darray,
np.datetime64,
)

s11 = pd.Series(
[datetime.datetime.now().date(), datetime.datetime.now().date()]
).diff()
check(
assert_type(s11.to_numpy(), np_1darray[np.timedelta64]),
np_1darray,
np.timedelta64,
)


def test_where() -> None:
s = pd.Series([1, 2, 3], dtype=int)

Expand Down
Loading