Skip to content
22 changes: 12 additions & 10 deletions pandas/core/arrays/numeric.py
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,7 @@
pandas_dtype,
)

import pandas as pd
from pandas.core.arrays.masked import (
BaseMaskedArray,
BaseMaskedDtype,
Expand Down Expand Up @@ -231,16 +232,17 @@ def _coerce_to_data_and_mask(
values = np.ones(values.shape, dtype=dtype)
else:
idx = np.nanargmax(values)
if int(values[idx]) != original[idx]:
# We have ints that lost precision during the cast.
inferred_type = lib.infer_dtype(original, skipna=True)
if (
inferred_type not in ["floating", "mixed-integer-float"]
and not mask.any()
):
values = np.asarray(original, dtype=dtype)
else:
values = np.asarray(original, dtype="object")
if not (pd.isna(values[idx]) or pd.isna(original[idx])):
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you check this without pd.isna? we try to avoid importing pd in files that are "high up" in the dependency hierarchy

if int(values[idx]) != original[idx]:
# We have ints that lost precision during the cast.
inferred_type = lib.infer_dtype(original, skipna=True)
if (
inferred_type not in ["floating", "mixed-integer-float"]
and not mask.any()
):
values = np.asarray(original, dtype=dtype)
else:
values = np.asarray(original, dtype="object")

# we copy as need to coerce here
if mask.any():
Expand Down
19 changes: 19 additions & 0 deletions pandas/tests/indexing/test_iloc.py
Original file line number Diff line number Diff line change
Expand Up @@ -1090,6 +1090,25 @@ def test_iloc_setitem_pure_position_based(self, indexer, has_ref):
expected = DataFrame({"a": [1, 2, 3], "b": [11, 12, 13], "c": [7, 8, 9]})
tm.assert_frame_equal(df2, expected)

def test_iloc_assignment_nullable_int_with_na(self):
# GH#62473
ser = Series(
[4, 6, 9, None, 10, 13, 15], index=[6, 1, 5, 0, 3, 2, 4], dtype="Int64"
)
indices = Series(
[6, 1, 5, 0, 3, 2, 4], index=[6, 1, 5, 0, 3, 2, 4], dtype="int64"
)
values = Series(
[4, 6, 9, None, 10, 13, 15], index=[4, 1, 2, 6, 0, 5, 3], dtype="Int64"
)

ser.iloc[indices] = values

expected = Series(
[NA, 6, 13, 10, 15, 9, 4], index=[6, 1, 5, 0, 3, 2, 4], dtype="Int64"
)
tm.assert_series_equal(ser, expected)

@pytest.mark.parametrize("has_ref", [True, False])
def test_iloc_setitem_dictionary_value(self, has_ref):
# GH#37728
Expand Down
Loading