Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion docs/source/quantization_overview.rst
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ First we want to lay out the torchao stack::

Quantization Algorithms/Flows: weight only/dynamic/static quantization, hqq, awq, gptq etc.
---------------------------------------------------------------------------------------------
Quantized Tensors (derived dtypes): Int4Tensor, Int4PreshuffledTensor, Float8Tensor
Quantized Tensors (derived dtypes): Int4Tensor, Int4PreshuffledTensor, Int8Tensor, Float8Tensor
---------------------------------------------------------------------------------------------
Quantization Primitive Ops/Efficient Kernels: matmul, quantize, dequantize
---------------------------------------------------------------------------------------------
Expand Down Expand Up @@ -88,6 +88,8 @@ So in general we structure Tensor subclasses by dervied dtpype and packing forma
- scaled int4
- preshuffled (special format to optimize for loading)
- float8 act + int4 weight dynamic quantization and int4 weight only quantization
* - Int8Tensor
- plain

.. note::
We don't have granularity specific tensor subclasses, i.e. no Float8RowwiseTensor or Float8BlockwiseTensor, all granularities are implemented in the same Tensor, we typically use a general `block_size` attribute to distinguish between different granularities, and each Tensor is allowed to support only a subset of all possible granularity options.
Expand Down
239 changes: 239 additions & 0 deletions test/quantization/quantize_/workflows/int8/test_int8_tensor.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,239 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.

import copy
import unittest

import torch
from torch._inductor.utils import run_and_get_code
from torch.testing import FileCheck
from torch.testing._internal import common_utils

from torchao.quantization import (
Int8DynamicActivationInt8WeightConfig,
Int8WeightOnlyConfig,
quantize_,
)
from torchao.quantization.granularity import PerRow, PerTensor
from torchao.quantization.utils import compute_error
from torchao.testing.utils import TorchAOIntegrationTestCase


# TODO: Refactor after https://github.com/pytorch/ao/pull/2729 is merged
class ToyTwoLinearModel(torch.nn.Module):
def __init__(
self,
input_dim,
hidden_dim,
output_dim,
has_bias=False,
dtype=None,
device=None,
):
super().__init__()
self.dtype = dtype
self.device = device
self.linear1 = torch.nn.Linear(
input_dim, hidden_dim, bias=has_bias, dtype=dtype, device=device
)
self.linear2 = torch.nn.Linear(
hidden_dim, output_dim, bias=has_bias, dtype=dtype, device=device
)

def forward(self, x):
x = self.linear1(x)
x = self.linear2(x)
return x


@unittest.skipIf(not torch.cuda.is_available(), "Need CUDA available")
@common_utils.instantiate_parametrized_tests
class TestInt8Tensor(TorchAOIntegrationTestCase):
def setUp(self):
super().setUp()

self.test_shape = (32, 20)
self.dtype = torch.bfloat16
self.batch_size = 32

torch.manual_seed(42)

@common_utils.parametrize(
"config",
[
Int8DynamicActivationInt8WeightConfig(version=2),
Int8WeightOnlyConfig(version=2),
],
)
def test_creation_and_attributes(self, config):
"""Test tensor creation, dtypes, and ranges"""
linear = torch.nn.Linear(
self.test_shape[1],
self.test_shape[0],
bias=False,
dtype=self.dtype,
device="cuda",
)
quantize_(linear, config)

w = linear.weight

self.assertEqual(w.shape, self.test_shape)
self.assertEqual(w.qdata.dtype, torch.int8)
self.assertTrue(torch.all(w.qdata >= -128) and torch.all(w.qdata <= 127))

@common_utils.parametrize("dtype", [torch.bfloat16, torch.float32])
@common_utils.parametrize("compile", [True, False])
@common_utils.parametrize(
"config",
[
Int8DynamicActivationInt8WeightConfig(version=2),
Int8WeightOnlyConfig(version=2),
],
)
@common_utils.parametrize(
"sizes",
[
((128,), 256, 128), # 2D
((32, 128), 64, 256), # 3D
],
)
def test_int8_linear_variants(
self,
dtype: torch.dtype,
config,
compile: bool,
sizes: tuple,
):
"""Test linear operation supports including shape and compile"""
M, N, K = sizes
input_tensor = torch.randn(*M, K, dtype=dtype, device="cuda")
model = ToyTwoLinearModel(K, N, K, dtype=dtype, device="cuda").eval()
model_q = copy.deepcopy(model)

quantize_(model_q, config)

self.assertEqual(model_q.linear2.weight.scale.shape, (K,))
self.assertEqual(model_q.linear2.weight.scale.ndim, 1)

if compile:
model_q = torch.compile(model_q, fullgraph=True)

output_fp = model(input_tensor)
output_quantized = model_q(input_tensor)

assert compute_error(output_fp, output_quantized) > 20, (
f"Quantization error is too high got a SQNR of {compute_error(output_fp, output_quantized)}"
)

@common_utils.parametrize(
"config",
[
Int8DynamicActivationInt8WeightConfig(version=2),
Int8WeightOnlyConfig(version=2),
],
)
@common_utils.parametrize("device", ["cpu", "cuda"])
@common_utils.parametrize("dtype", [torch.bfloat16, torch.float16])
def test_slice(self, config, device, dtype):
"""Test tensor slicing with per-row quantization"""
tensor_size = 256
slice_sizes = (64, 128)

dummy = torch.nn.Linear(
tensor_size, tensor_size, bias=False, dtype=dtype, device=device
)
quantize_(dummy, config)

weight1 = dummy.weight.clone().narrow(0, 0, slice_sizes[0])
weight2 = dummy.weight.clone().narrow(1, 0, slice_sizes[1])

self.assertEqual(weight1.qdata, dummy.weight.qdata.narrow(0, 0, slice_sizes[0]))
self.assertEqual(weight2.qdata, dummy.weight.qdata.narrow(1, 0, slice_sizes[1]))
self.assertEqual(weight1.scale, dummy.weight.scale.narrow(0, 0, slice_sizes[0]))
self.assertEqual(weight2.scale, dummy.weight.scale)
with self.assertRaises(NotImplementedError):
_ = dummy.weight[::2]

@common_utils.parametrize(
"config",
[
Int8DynamicActivationInt8WeightConfig,
Int8WeightOnlyConfig,
],
)
@common_utils.parametrize("granularity", [PerTensor(), PerRow()])
def test_index_select(self, config, granularity):
"""test that `x_0 = x[0]` works when `x` is a 2D quantized tensor."""
N, K = 256, 512
x = torch.randn(N, K, device="cuda", dtype=torch.bfloat16)
linear = torch.nn.Linear(K, N, bias=False, dtype=torch.bfloat16, device="cuda")
linear.weight.data = x

config = config(version=2, granularity=granularity)
quantize_(linear, config)

x_int8 = linear.weight
x_int8_0 = x_int8[0]

# Test dequantization consistency
torch.testing.assert_close(
x_int8.dequantize()[0], x_int8_0.dequantize(), atol=0, rtol=0
)

# Test block_size granularity
if isinstance(granularity, PerRow):
self.assertEqual(x_int8.block_size, [1, K])
elif isinstance(granularity, PerTensor):
self.assertEqual(x_int8.block_size, [N, K])

@common_utils.parametrize(
"config",
[
Int8DynamicActivationInt8WeightConfig(version=2),
Int8WeightOnlyConfig(version=2),
],
)
def test_dequantization_accuracy(self, config):
"""Test dequantization accuracy separately"""
linear = torch.nn.Linear(
256, 512, bias=False, dtype=torch.bfloat16, device="cuda"
)
weight_fp = copy.deepcopy(linear.weight)
quantize_(linear, config)

tensor = linear.weight
dequantized = tensor.dequantize()
self.assertEqual(dequantized.shape, weight_fp.shape)
assert compute_error(dequantized, weight_fp) > 20, (
f"Dequantization error is too high to get a SQNR of {compute_error(dequantized, weight_fp)}"
)

def test_available_gpu_kernels(self):
"""Check which GPU kernels are used"""
torch.compiler.reset()

M, K, N = 128, 256, 512
m = torch.nn.Sequential(
torch.nn.Linear(K, N, device="cuda", dtype=torch.bfloat16)
)

config = Int8DynamicActivationInt8WeightConfig(version=2)
quantize_(m, config)

m = torch.compile(m)
x = torch.randn(M, K, device="cuda", dtype=torch.bfloat16)

out, code = run_and_get_code(m, x)

# Check expected kernels are present
FileCheck().check_count("triton_per_fused", 1).check_count(
"extern_kernels._int_mm", 1
).check_count("triton_poi_fused", 1).run(code[0])


if __name__ == "__main__":
common_utils.run_tests()
2 changes: 2 additions & 0 deletions torchao/quantization/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -100,6 +100,7 @@
Int4PreshuffledTensor,
Int4Tensor,
Int4TilePackedTo4dTensor,
Int8Tensor,
IntxOpaqueTensor,
IntxUnpackedToInt8Tensor,
)
Expand Down Expand Up @@ -173,6 +174,7 @@
"IntxOpaqueTensor",
"IntxUnpackedToInt8Tensor",
"Int4TilePackedTo4dTensor",
"Int8Tensor",
"Float8Tensor",
"Int4OpaqueTensor",
"Float8OpaqueTensor",
Expand Down
Loading