-
Notifications
You must be signed in to change notification settings - Fork 13.6k
Refactor: convert_hf_to_gguf.py #17114
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Draft
pwilkin
wants to merge
2
commits into
ggml-org:master
Choose a base branch
from
pwilkin:convert_refactor
base: master
Could not load branches
Branch not found: {{ refName }}
Loading
Could not load tags
Nothing to show
Loading
Are you sure you want to change the base?
Some commits from the old base branch may be removed from the timeline,
and old review comments may become outdated.
Draft
Changes from all commits
Commits
Show all changes
2 commits
Select commit
Hold shift + click to select a range
File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,191 @@ | ||
| from __future__ import annotations | ||
| from .base import ( | ||
| ModelBase, TextModel, MmprojModel, ModelType, SentencePieceTokenTypes, | ||
| logger, _mistral_common_installed, _mistral_import_error_msg, | ||
| get_model_architecture, LazyTorchTensor | ||
| ) | ||
| from typing import TYPE_CHECKING | ||
| if TYPE_CHECKING: | ||
| from torch import Tensor # type: ignore # noqa: F401 | ||
|
|
||
| __all__ = [ | ||
| "ModelBase", "TextModel", "MmprojModel", "ModelType", "SentencePieceTokenTypes", | ||
| "get_model_architecture", "LazyTorchTensor", "logger", | ||
| "_mistral_common_installed", "_mistral_import_error_msg" | ||
| ] | ||
| # List of all model module names (used for lazy loading) | ||
| _MODEL_MODULES = [ | ||
| 'gpt_neox', 'bloom', 'mpt', 'orion', 'baichuan', 'xverse', 'falcon', 'starcoder', | ||
| 'refact', 'stable_lm', 'llama', 'arcee', 'mistral', 'mistral3', 'deci', 'bitnet', 'grok', | ||
| 'dbrx', 'minicpm', 'qwen', 'qwen_vl', 'qwen3_vl', 'dream', 'llada', 'ernie', | ||
| 'intern_vision', 'wav_tokenizer', 'gpt2', 'phi', 'plamo', 'codeshell', 'internlm', | ||
| 'bert', 'gemma', 'rwkv', 'mamba', 'jamba', 'command_r', 'olmo', 'openelm', | ||
| 'arctic', 'deepseek', 'minimax', 'pangu', 'dots1', 'plm', 't5', 'jais', 'glm', | ||
| 'chatglm', 'nemotron', 'exaone', 'granite', 'bailing', 'grove', 'chameleon', | ||
| 'ultravox', 'falcon_h1', 'hunyuan', 'smollm', 'gpt_oss', 'lfm2', 'small_thinker', | ||
| 'apertus', 'pixtral', 'lighton_ocr', 'kimi_vl', 'cogvlm', 'janus_pro', 'llama4', | ||
| 'smolvlm' | ||
| ] | ||
| # Track which modules have been loaded | ||
| _loaded_modules = set() | ||
|
|
||
|
|
||
| # Function to load all model modules | ||
| def _load_all_models(): | ||
| """Import all model modules to trigger registration.""" | ||
| if len(_loaded_modules) == len(_MODEL_MODULES): | ||
| return # Already loaded | ||
| for module_name in _MODEL_MODULES: | ||
| if module_name not in _loaded_modules: | ||
| try: | ||
| __import__(f"conversion.{module_name}") | ||
| _loaded_modules.add(module_name) | ||
| except Exception as e: | ||
| # Log but don't fail - some models might have issues | ||
| logger.warning(f"Failed to load model module {module_name}: {e}") | ||
|
|
||
|
|
||
| # Function to get a model class by name | ||
| def get_model_class(name: str, mmproj: bool = False): | ||
| """ | ||
| Dynamically import and return a model class by name. | ||
| This avoids circular dependencies by only importing when needed. | ||
| """ | ||
| # Map model names to their module and class name | ||
| model_map = { | ||
| # Text models | ||
| "LlamaModel": ("llama", "LlamaModel"), | ||
| "MistralModel": ("mistral", "MistralModel"), | ||
| "GPTNeoXModel": ("gpt_neox", "GPTNeoXModel"), | ||
| "BloomModel": ("bloom", "BloomModel"), | ||
| "MPTModel": ("mpt", "MPTModel"), | ||
| "OrionModel": ("orion", "OrionModel"), | ||
| "BaichuanModel": ("baichuan", "BaichuanModel"), | ||
| "XverseModel": ("xverse", "XverseModel"), | ||
| "FalconModel": ("falcon", "FalconModel"), | ||
| "StarCoderModel": ("starcoder", "StarCoderModel"), | ||
| "StarCoder2Model": ("starcoder", "StarCoder2Model"), | ||
| "RefactModel": ("refact", "RefactModel"), | ||
| "StableLMModel": ("stable_lm", "StableLMModel"), | ||
| "ArceeModel": ("arcee", "ArceeModel"), | ||
| "Mistral3Model": ("mistral3", "Mistral3Model"), | ||
| "DeciModel": ("deci", "DeciModel"), | ||
| "BitnetModel": ("bitnet", "BitnetModel"), | ||
| "GrokModel": ("grok", "GrokModel"), | ||
| "DbrxModel": ("dbrx", "DbrxModel"), | ||
| "MiniCPMModel": ("minicpm", "MiniCPMModel"), | ||
| "MiniCPM3Model": ("minicpm", "MiniCPM3Model"), | ||
| "QwenModel": ("qwen", "QwenModel"), | ||
| "Qwen2Model": ("qwen", "Qwen2Model"), | ||
| "Qwen2MoeModel": ("qwen", "Qwen2MoeModel"), | ||
| "Qwen3Model": ("qwen", "Qwen3Model"), | ||
| "Qwen3MoeModel": ("qwen", "Qwen3MoeModel"), | ||
| "Qwen25OmniModel": ("qwen_vl", "Qwen25OmniModel"), | ||
| "Qwen3VLTextModel": ("qwen3_vl", "Qwen3VLTextModel"), | ||
| "Qwen3VLMoeTextModel": ("qwen3_vl", "Qwen3VLMoeTextModel"), | ||
| "DreamModel": ("dream", "DreamModel"), | ||
| "LLaDAModel": ("llada", "LLaDAModel"), | ||
| "LLaDAMoEModel": ("llada", "LLaDAMoEModel"), | ||
| "Ernie4_5Model": ("ernie", "Ernie4_5Model"), | ||
| "Ernie4_5MoeModel": ("ernie", "Ernie4_5MoeModel"), | ||
| "InternVisionModel": ("intern_vision", "InternVisionModel"), | ||
| "WavTokenizerDecModel": ("wav_tokenizer", "WavTokenizerDecModel"), | ||
| "GPT2Model": ("gpt2", "GPT2Model"), | ||
| "Phi2Model": ("phi", "Phi2Model"), | ||
| "Phi3MiniModel": ("phi", "Phi3MiniModel"), | ||
| "PhiMoeModel": ("phi", "PhiMoeModel"), | ||
| "PlamoModel": ("plamo", "PlamoModel"), | ||
| "Plamo2Model": ("plamo", "Plamo2Model"), | ||
| "CodeShellModel": ("codeshell", "CodeShellModel"), | ||
| "InternLM2Model": ("internlm", "InternLM2Model"), | ||
| "InternLM3Model": ("internlm", "InternLM3Model"), | ||
| "BertModel": ("bert", "BertModel"), | ||
| "DistilBertModel": ("bert", "DistilBertModel"), | ||
| "RobertaModel": ("bert", "RobertaModel"), | ||
| "NomicBertModel": ("bert", "NomicBertModel"), | ||
| "NeoBert": ("bert", "NeoBert"), | ||
| "XLMRobertaModel": ("bert", "XLMRobertaModel"), | ||
| "JinaBertV2Model": ("bert", "JinaBertV2Model"), | ||
| "GemmaModel": ("gemma", "GemmaModel"), | ||
| "Gemma2Model": ("gemma", "Gemma2Model"), | ||
| "Gemma3Model": ("gemma", "Gemma3Model"), | ||
| "EmbeddingGemma": ("gemma", "EmbeddingGemma"), | ||
| "Gemma3NModel": ("gemma", "Gemma3NModel"), | ||
| "Rwkv6Model": ("rwkv", "Rwkv6Model"), | ||
| "RWKV6Qwen2Model": ("rwkv", "RWKV6Qwen2Model"), | ||
| "Rwkv7Model": ("rwkv", "Rwkv7Model"), | ||
| "ARwkv7Model": ("rwkv", "ARwkv7Model"), | ||
| "MambaModel": ("mamba", "MambaModel"), | ||
| "Mamba2Model": ("mamba", "Mamba2Model"), | ||
| "JambaModel": ("jamba", "JambaModel"), | ||
| "CommandR2Model": ("command_r", "CommandR2Model"), | ||
| "Cohere2Model": ("command_r", "Cohere2Model"), | ||
| "OlmoModel": ("olmo", "OlmoModel"), | ||
| "OlmoForCausalLM": ("olmo", "OlmoModel"), | ||
| "SeedOssModel": ("olmo", "SeedOssModel"), | ||
| "Olmo2Model": ("olmo", "Olmo2Model"), | ||
| "OlmoeModel": ("olmo", "OlmoeModel"), | ||
| "OpenELMModel": ("openelm", "OpenELMModel"), | ||
| "ArcticModel": ("arctic", "ArcticModel"), | ||
| "DeepseekModel": ("deepseek", "DeepseekModel"), | ||
| "DeepseekV2Model": ("deepseek", "DeepseekV2Model"), | ||
| "MiniMaxM2Model": ("minimax", "MiniMaxM2Model"), | ||
| "PanguEmbeddedModel": ("pangu", "PanguEmbeddedModel"), | ||
| "Dots1Model": ("dots1", "Dots1Model"), | ||
| "PLMModel": ("plm", "PLMModel"), | ||
| "T5Model": ("t5", "T5Model"), | ||
| "T5ForConditionalGeneration": ("t5", "T5Model"), | ||
| "T5WithLMHeadModel": ("t5", "T5Model"), | ||
| "T5EncoderModel": ("t5", "T5EncoderModel"), | ||
| "JaisModel": ("jais", "JaisModel"), | ||
| "Glm4Model": ("glm", "Glm4Model"), | ||
| "Glm4MoeModel": ("glm", "Glm4MoeModel"), | ||
| "ChatGLMModel": ("chatglm", "ChatGLMModel"), | ||
| "NemotronModel": ("nemotron", "NemotronModel"), | ||
| "NemotronHModel": ("nemotron", "NemotronHModel"), | ||
| "ExaoneModel": ("exaone", "ExaoneModel"), | ||
| "Exaone4Model": ("exaone", "Exaone4Model"), | ||
| "GraniteModel": ("granite", "GraniteModel"), | ||
| "GraniteMoeModel": ("granite", "GraniteMoeModel"), | ||
| "GraniteHybridModel": ("granite", "GraniteHybridModel"), | ||
| "BailingMoeModel": ("bailing", "BailingMoeModel"), | ||
| "BailingMoeV2Model": ("bailing", "BailingMoeV2Model"), | ||
| "GroveMoeModel": ("grove", "GroveMoeModel"), | ||
| "ChameleonModel": ("chameleon", "ChameleonModel"), | ||
| "HunYuanMoEModel": ("hunyuan", "HunYuanMoEModel"), | ||
| "HunYuanModel": ("hunyuan", "HunYuanModel"), | ||
| "SmolLM3Model": ("smollm", "SmolLM3Model"), | ||
| "GptOssModel": ("gpt_oss", "GptOssModel"), | ||
| "LFM2Model": ("lfm2", "LFM2Model"), | ||
| "LFM2MoeModel": ("lfm2", "LFM2MoeModel"), | ||
| "SmallThinkerModel": ("small_thinker", "SmallThinkerModel"), | ||
| "ApertusModel": ("apertus", "ApertusModel"), | ||
| "PixtralModel": ("pixtral", "PixtralModel"), | ||
| "LightOnOCRVisionModel": ("lighton_ocr", "LightOnOCRVisionModel"), | ||
| "KimiVLModel": ("kimi_vl", "KimiVLModel"), | ||
| "CogVLMModel": ("cogvlm", "CogVLMModel"), | ||
| "JanusProModel": ("janus_pro", "JanusProModel"), | ||
| # Multimodal models | ||
| "LlavaVisionModel": ("llava", "LlavaVisionModel"), | ||
| "SmolVLMModel": ("smolvlm", "SmolVLMModel"), | ||
| "Llama4Model": ("llama4", "Llama4Model"), | ||
| "Llama4VisionModel": ("llama4", "Llama4VisionModel"), | ||
| "Qwen2VLModel": ("qwen_vl", "Qwen2VLVisionModel"), | ||
| "Qwen2VLVisionModel": ("qwen_vl", "Qwen2VLVisionModel"), | ||
| "Qwen2_5_VLForConditionalGeneration": ("qwen_vl", "Qwen2VLVisionModel"), | ||
| "Qwen3VLVisionModel": ("qwen3_vl", "Qwen3VLVisionModel"), | ||
| "Gemma3VisionModel": ("gemma", "Gemma3VisionModel"), | ||
| "LFM2VLModel": ("lfm2", "LFM2VLModel"), | ||
| "UltravoxModel": ("ultravox", "UltravoxModel"), | ||
| "WhisperEncoderModel": ("ultravox", "WhisperEncoderModel"), | ||
| "UltravoxWhisperEncoderModel": ("ultravox", "UltravoxWhisperEncoderModel"), | ||
| "VoxtralWhisperEncoderModel": ("ultravox", "VoxtralWhisperEncoderModel"), | ||
| "FalconH1Model": ("falcon_h1", "FalconH1Model"), | ||
| "CogVLMVisionModel": ("cogvlm", "CogVLMVisionModel"), | ||
| "JanusProVisionModel": ("janus_pro", "JanusProVisionModel"), | ||
| } | ||
| if name not in model_map: | ||
| raise ValueError(f"Unknown model class: {name}") | ||
| module_name, class_name = model_map[name] | ||
| module = __import__(f"conversion.{module_name}", fromlist=[class_name]) | ||
| return getattr(module, class_name) | ||
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,43 @@ | ||
| from __future__ import annotations | ||
| from .base import ( | ||
| ModelBase, gguf | ||
| ) | ||
| from typing import TYPE_CHECKING | ||
| if TYPE_CHECKING: | ||
| pass | ||
| from .llama import LlamaModel | ||
|
|
||
|
|
||
| @ModelBase.register("ApertusForCausalLM") | ||
| class ApertusModel(LlamaModel): | ||
| model_arch = gguf.MODEL_ARCH.APERTUS | ||
| undo_permute = False | ||
| _alpha_n = {} | ||
| _alpha_p = {} | ||
| _beta = {} | ||
| _eps = {} | ||
|
|
||
| def modify_tensors(self, data_torch, name, bid): | ||
| # Handle xIELU activation parameters | ||
| n_layers = self.hparams["num_hidden_layers"] | ||
| if name.endswith(".act_fn.alpha_n"): | ||
| self._alpha_n[bid] = data_torch.to("cpu").float().item() | ||
| if (len(self._alpha_n) == n_layers): | ||
| self.gguf_writer.add_xielu_alpha_n([self._alpha_n[k] for k in sorted(self._alpha_n)]) | ||
| return [] | ||
| if name.endswith(".act_fn.alpha_p"): | ||
| self._alpha_p[bid] = data_torch.to("cpu").float().item() | ||
| if (len(self._alpha_p) == n_layers): | ||
| self.gguf_writer.add_xielu_alpha_p([self._alpha_p[k] for k in sorted(self._alpha_p)]) | ||
| return [] | ||
| if name.endswith(".act_fn.beta"): | ||
| self._beta[bid] = data_torch.to("cpu").float().item() | ||
| if (len(self._beta) == n_layers): | ||
| self.gguf_writer.add_xielu_beta([self._beta[k] for k in sorted(self._beta)]) | ||
| return [] | ||
| if name.endswith(".act_fn.eps"): | ||
| self._eps[bid] = data_torch.to("cpu").float().item() | ||
| if (len(self._eps) == n_layers): | ||
| self.gguf_writer.add_xielu_eps([self._eps[k] for k in sorted(self._eps)]) | ||
| return [] | ||
| return super().modify_tensors(data_torch, name, bid) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,22 @@ | ||
| from __future__ import annotations | ||
| from .base import ( | ||
| ModelBase, gguf | ||
| ) | ||
| from typing import TYPE_CHECKING | ||
| if TYPE_CHECKING: | ||
| pass | ||
| from .llama import LlamaModel | ||
|
|
||
|
|
||
| @ModelBase.register("ArceeForCausalLM") | ||
| class ArceeModel(LlamaModel): | ||
| model_arch = gguf.MODEL_ARCH.ARCEE | ||
|
|
||
| def set_gguf_parameters(self): | ||
| super().set_gguf_parameters() | ||
| self._try_set_pooling_type() | ||
| rope_scaling = self.hparams.get("rope_scaling") or {} | ||
| if rope_scaling.get("rope_type", rope_scaling.get("type")) == "yarn" and "factor" in rope_scaling: | ||
| self.gguf_writer.add_rope_scaling_type(gguf.RopeScalingType.YARN) | ||
| self.gguf_writer.add_rope_scaling_factor(rope_scaling["factor"]) | ||
| self.gguf_writer.add_rope_scaling_orig_ctx_len(rope_scaling["original_max_position_embeddings"]) |
This file contains hidden or bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,131 @@ | ||
| from __future__ import annotations | ||
| import json | ||
| import sys | ||
| from .base import ( | ||
| ModelBase, TextModel, SentencePieceTokenTypes, | ||
| gguf, torch, logger | ||
| ) | ||
| from .llama import LlamaModel | ||
| from typing import TYPE_CHECKING, Iterable | ||
| if TYPE_CHECKING: | ||
| from torch import Tensor | ||
|
|
||
|
|
||
| @ModelBase.register("ArcticForCausalLM") | ||
| class ArcticModel(TextModel): | ||
| model_arch = gguf.MODEL_ARCH.ARCTIC | ||
|
|
||
| def set_vocab(self): | ||
| # The reason for using a custom implementation here is that the | ||
| # snowflake-arctic-instruct model redefined tokens 31998 and 31999 from | ||
| # tokenizer.model and used them as BOS and EOS instead of adding new tokens. | ||
| from sentencepiece import SentencePieceProcessor | ||
| tokenizer_path = self.dir_model / 'tokenizer.model' | ||
| if not tokenizer_path.is_file(): | ||
| logger.error(f'Error: Missing {tokenizer_path}') | ||
| sys.exit(1) | ||
| # Read the whole vocabulary from the tokenizer.model file | ||
| tokenizer = SentencePieceProcessor() | ||
| tokenizer.LoadFromFile(str(tokenizer_path)) | ||
| vocab_size = self.hparams.get('vocab_size', tokenizer.vocab_size()) | ||
| tokens: list[bytes] = [f"[PAD{i}]".encode("utf-8") for i in range(vocab_size)] | ||
| scores: list[float] = [-10000.0] * vocab_size | ||
| toktypes: list[int] = [SentencePieceTokenTypes.UNUSED] * vocab_size | ||
| for token_id in range(tokenizer.vocab_size()): | ||
| piece = tokenizer.IdToPiece(token_id) | ||
| text = piece.encode("utf-8") | ||
| score = tokenizer.GetScore(token_id) | ||
| toktype = SentencePieceTokenTypes.NORMAL | ||
| if tokenizer.IsUnknown(token_id): | ||
| toktype = SentencePieceTokenTypes.UNKNOWN | ||
| elif tokenizer.IsControl(token_id): | ||
| toktype = SentencePieceTokenTypes.CONTROL | ||
| elif tokenizer.IsUnused(token_id): | ||
| toktype = SentencePieceTokenTypes.UNUSED | ||
| elif tokenizer.IsByte(token_id): | ||
| toktype = SentencePieceTokenTypes.BYTE | ||
| tokens[token_id] = text | ||
| scores[token_id] = score | ||
| toktypes[token_id] = toktype | ||
| # Use the added_tokens_decoder field from tokeniser_config.json as the source | ||
| # of information about added/redefined tokens and modify them accordingly. | ||
| tokenizer_config_file = self.dir_model / 'tokenizer_config.json' | ||
| if tokenizer_config_file.is_file(): | ||
| with open(tokenizer_config_file, "r", encoding="utf-8") as f: | ||
| tokenizer_config_json = json.load(f) | ||
| if "added_tokens_decoder" in tokenizer_config_json: | ||
| added_tokens_decoder = tokenizer_config_json["added_tokens_decoder"] | ||
| for token_id, token_json in added_tokens_decoder.items(): | ||
| token_id = int(token_id) | ||
| if token_id >= vocab_size: | ||
| logger.debug(f'ignore token {token_id}: id is out of range, max={vocab_size - 1}') | ||
| continue | ||
| token_content = token_json["content"] | ||
| token_type = SentencePieceTokenTypes.USER_DEFINED | ||
| token_score = -10000.0 | ||
| # Map unk_token to UNKNOWN, other special tokens to CONTROL | ||
| # Set the score to 0.0 as in the original tokenizer.model | ||
| if ("special" in token_json) and token_json["special"]: | ||
| if token_content == tokenizer_config_json["unk_token"]: | ||
| token_type = SentencePieceTokenTypes.UNKNOWN | ||
| else: | ||
| token_type = SentencePieceTokenTypes.CONTROL | ||
| token_score = 0.0 | ||
| logger.info(f"Setting added token {token_id} to '{token_content}' (type: {token_type}, score: {token_score:.2f})") | ||
| tokens[token_id] = token_content.encode("utf-8") | ||
| toktypes[token_id] = token_type | ||
| scores[token_id] = token_score | ||
| self.gguf_writer.add_tokenizer_model("llama") | ||
| self.gguf_writer.add_tokenizer_pre("default") | ||
| self.gguf_writer.add_token_list(tokens) | ||
| self.gguf_writer.add_token_scores(scores) | ||
| self.gguf_writer.add_token_types(toktypes) | ||
| special_vocab = gguf.SpecialVocab(self.dir_model, n_vocab=len(tokens)) | ||
| special_vocab.add_to_gguf(self.gguf_writer) | ||
|
|
||
| def set_gguf_parameters(self): | ||
| super().set_gguf_parameters() | ||
| hparams = self.hparams | ||
| self.gguf_writer.add_vocab_size(hparams["vocab_size"]) | ||
| self.gguf_writer.add_rope_dimension_count(hparams["hidden_size"] // hparams["num_attention_heads"]) | ||
| _experts: list[dict[str, Tensor]] | None = None | ||
|
|
||
| def modify_tensors(self, data_torch: Tensor, name: str, bid: int | None) -> Iterable[tuple[str, Tensor]]: | ||
| n_head = self.hparams["num_attention_heads"] | ||
| n_kv_head = self.hparams.get("num_key_value_heads") | ||
| if name.endswith("q_proj.weight"): | ||
| data_torch = LlamaModel.permute(data_torch, n_head, n_head) | ||
| if name.endswith("k_proj.weight"): | ||
| data_torch = LlamaModel.permute(data_torch, n_head, n_kv_head) | ||
| # process the experts separately | ||
| if name.find("block_sparse_moe.experts") != -1: | ||
| n_experts = self.hparams["num_local_experts"] | ||
| assert bid is not None | ||
| if self._experts is None: | ||
| self._experts = [{} for _ in range(self.block_count)] | ||
| self._experts[bid][name] = data_torch | ||
| if len(self._experts[bid]) >= n_experts * 3: | ||
| tensors: list[tuple[str, Tensor]] = [] | ||
| # merge the experts into a single 3d tensor | ||
| for wid in ["w1", "w2", "w3"]: | ||
| datas: list[Tensor] = [] | ||
| for xid in range(n_experts): | ||
| ename = f"model.layers.{bid}.block_sparse_moe.experts.{xid}.{wid}.weight" | ||
| datas.append(self._experts[bid][ename]) | ||
| del self._experts[bid][ename] | ||
| data_torch = torch.stack(datas, dim=0) | ||
| merged_name = f"layers.{bid}.feed_forward.experts.{wid}.weight" | ||
| new_name = self.map_tensor_name(merged_name) | ||
| tensors.append((new_name, data_torch)) | ||
| return tensors | ||
| else: | ||
| return [] | ||
| return [(self.map_tensor_name(name), data_torch)] | ||
|
|
||
| def prepare_tensors(self): | ||
| super().prepare_tensors() | ||
| if self._experts is not None: | ||
| # flatten `list[dict[str, Tensor]]` into `list[str]` | ||
| experts = [k for d in self._experts for k in d.keys()] | ||
| if len(experts) > 0: | ||
| raise ValueError(f"Unprocessed experts: {experts}") |
Oops, something went wrong.
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Since the
class_nameseems to always be equal toname, would it make sense to lighten themodel_mapto avoid having to write the class name twice every time?